reduced. By this choice of 7, the accuracy of the solution obtained can be maintained more uniformly over
the whole of the calculated time interval and, as a result, great economy of the calculations can be achieved.

NOTATION

t, time; ¢, turbulence function; ¥, current function; 8, dimensionless temperature; u, v, x, andy, com-
ponents of velocity; 1, scale of length; AT, characteristic temperature difference; v, kinematic viscosity; «,
thermal conductivity; g, acceleration due to gravity; 5, thermal-expansion coefficient; 7, discretization step
for time variable; h, discretization step for space variables; Ve = @i+1, j-—zz/)i’ jF Pimg, j)/hz; n, vector normal
to surface; o, iterational parameter; 7, smoothing parameter for boundary condition on ¢; s, number of inter-
nal iteration; sl number of external iteration; gy, accuracy of internal iteration; €y, accuracy of external
iteration; Pr = v/x, Prandtl number; Gr = gL3AT/v?, Grashof number; Ra = PrGr, Rayleigh number; Ry, /2=
O.5ph|uii1, j !y Reynolds difference number,
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HEAT-CONDUCTION PROBLEM FOR A
MULTIPLY CONNECTED BODY

V. S. Kolesov and S. Ya. Gicheva UDC 536.24.02

A method for solving a heat-conduction problem for multiply connected domains is proposed
based on consecutive solution of problems for doubly connected domains. To provide an ex~
ample the heat-conduction problem is solved for a circle with two circular holes.

In applied mathematics the evaluation of temperature fields in multiply connected domains is a very
difficult problem. As mentioned in [1] there is no universal analytic method which would ensure a solution
to a heat-conduction problem., The possibilities of numerical methods are wide; their implementation, how-
ever, meets with difficulties, and to overcome them one must, as a rule, analyze each problem separately.
An approach which would reduce the solution of a heat-conduction problem for a multiply connected domain
to the solving of several problems of the same kind would, therefore, be welcome. The method proposed
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Fig. 1. Values of consecutive approximations o on the
straight line b + R, = b—R,: a) for R; =1, R, = 0.25, and b =
0.5; b) for R; =1, R, = 0.333, and b = 0.467.

below is based on a consecutive solution of an appropriate problem for doubly connected domains. To make
the exposition more clear the main concept of the method and the convergence proof are formulated for a
triply connected domain only. In principle, there are no difficulties in extending this approach to the case of
any multiply connected domains,

1. The first boundary-value problem is considered for a triply connected domain bounded by an outer
closed curve I'y and by inner ones I'y, T';:

AT (x, y) =[x, ¥)s Tlr,= @ (), Tir; =;(8), i =1, 2. )

The required function T(x,y) is obtained with the aid of the following iterative process: Let the first ap-
proximation Ul(x,y) be the solution for the doubly connected domain bounded by the outer closed curve Iy and
by an inner one, namely, I';:

AU (x, 9) =[ (%, ), U'ln, = (), Utir, = ¢,(5); @)

in other words, the commectivity of the domain due to the closed curve I is ignored. Since the boundary condi-
tion is not satisfied on the last curve, it seems appropriate that for the second approximation U2(x,y) one
adopts the solution of the problem

AU (x, y) =0, U, =0, U%r, = ¢o () —U'r.. @)
The subsequent iterative procedure follows the pattern
AU* (x, y) = 0, U¥p, = 0, Uk, = —U*'p,, “)
where i =1 for odd k, but i = 2 for even k.

It will be shown that the sum of the series
T y)= X Uk(x 9) ®)
k=1

is a solution of problem (1}.

To this end it is assumed that the sequence vk (x, y) approaches zero over the entire domain for k — «
and one considers the difference

N
SN(xv Y = T(x’ y)— 2 U* (x y).
k=1

The sequence of harmonic functions SN (x, y) vanishes at the outer closed curve and approaches zero
uniformly at the inner ones. By the Harnack theorem [2] sN (x, y) approaches zero uniformly over the entire
domain, that is, the relation (5) is satisfied.

It will now be shown that the sequence Uk (x, y) approaches zero. For simplicity, one assumes that ¢,
(s) = 0 and @,(s) = 0. Then U1 (x, y) =0, UK (x,y) = 0. The following notation is now introduced:

ak = max U*(x, y), bZ*~' = min U*7'(x, y).
x.yely x,yel
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It follows from the maximum principle that the sequences a’X and lb%k'ii are monotonically decreasing
with ¥ 1> a2K,

Since these sequences are bounded, there exists a limit

lim b2+~1 = — lim a2* = B 0.

PN P

It will now be shown that B = 0. Let us consider a sequence of auxiliary functions:

VE N (x, y) = U (1, y)— B + e,

where elk-1 = B —afK-2 (¢Jk~1 = ¢ and e’K~! — 0 for k — ), Itisnotdifficultto see thatthe functions yIK-tix, y)
are nonnegative and, consequently, they satisfy the Harnack inequality [2]. As the center of the circle
C,, one adopts the point (Xpk-1, ¥yk~1) of the minimum of U%~1 (x, y) on the "absent" boundary T,

UZk—l(xzk_p Yop_1) = bgkq'
Hence one obtains

k= —_ 2k—1
U? 1(x2k_1y y2k_1) =B— 82 ’

2k-1 > e%k'l.

with e2K71 = 0, 2K~1—0 and &’

2k~1
2

The radius R of the cirele is selected in such a way that for any point of T a circle of the radius R lies
entirely in our domain. Assuming that p < R, one has for all points of the circle Cp

R— Iy ok~ R - P 2Up— —
LV 1y, ) — p2t—1 . g2k—1).
Rto S W, Y s R—p (&7 2

If as the center of the new circle, the arc end on I, is adopted which is cut off by Cp, and if one applies
again the Harnack inequality, one obtains for the points of the new circle

— 2k—1
(et —e3t-1)

0LV* 1 (x, y) LCe, C= —————izg , &= (g}~ — el C

By continuing this procedure one obtains for any point of T
0L V¥ 1(x, y) L C%,
where v is the number of arcs into which the closed curve I is subdivided by the circumference of radius p.

Thus, the sequence vk~ (x, y) approaches wiformly zero on I'; and, correspondingly, the sequence
yk-t X, y) uniformly approaches B on I'y. It follows from (4) and the Harnack theorem that the sequence
vk {x, y) converges uniformly in the entire domain to a function T* (x, y) which is a solution of the problem

AT*(x, y) =0, T*p, =0, T*r, = — B.

It is shown in precisely the same way that the sequence of functions k-t (x, ¥) converges uniformly
in the entire domain to a function T** (x, y) which is the solution of the problem

AT* (x, y) =0, T** g, =0, T* I — B.

From the manner the sequences UK (x, y) have been obtained it now follows that if B = 0, then the
strengthened maximum principle is invalid for the functions T* (x, y) and T** (x, y). Consequently, B =0
and the relation (5) has been proved.

2. By way of example one obtains the solution of the following problem:
AT (x, y) =0, Tip, =Tip, =0, Tir, =T, ()
where the boundaries Iy, Iy, I, are described by the equations
WLt =Ri, (xFOP g =R, (x—bP + 4 = R

The first approximation U! is given in accordance with the described iteration procedure by the solution
of the problem

AUM(x, y) =0, Ulip, =0, U'ir, = T,

The variables are now changed by x' =x + by, y' =y, where
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L R—R ) (R
e (55 ). o (H5E )
Now the conformal mapping
§=iTC,Z=x’+iy',0=Vb?——R?=Vb§:~—R§
—c

maps a not-concentric annulus into a concentric one with the radii v; = (; +¢)/Ry, v; =[(by+c)/Ry] (v,> 4> 1).

The function U! is given by [3]

Ut—pin 2, p= —To (M)
?J. ln_Yl
71

In the above, p, ¢ are polar coordinates on the ¢ plane which can be expressed in terms of x and y as

follows:
S GEh TR _ 2y ‘
p l/ x—l—b—c)2—‘—y2 ’(P'—arctg (x+bi)2+y2_c2 )

To be able to find the second approximation U? (x,y), onehas to have the value of the function U! x, y)
on the closed curve I',. Substituting in (7) the equation of the closed curve T, and changing to the coordinates
x" =b;—Xx, y'' =y, one obtains after some easy transformations

1 29, Rb; — (29, Ry — YRy« 1
1 _— — n
v '“’ﬁ{ 2 PR, _( 2R, _&) - KIS (8)
Y1 Y1 V2
The second approximation U? is the solution of the problem
AU (x, y) =0, Utp, =0, Utlp, = —Up,. (9)

The conformal mapping 1 = (z' + ¢)/(z' —c) (z' =x' +iy") transforms the not-concentric circle into a
concentric one of radius y;', and the circle I, into one of radius y,. In the polar coordinates of r and ¢ in the
7 plane the expression (8) becomes

B 1 —2acosyp + o

Uip, =4+ -~—1In ;
e 2 1 —2xcosy + #*

where o =y R{/y,b; < 1 and the quantities A and % are given by the formula A = Ty, ® = v,R;/yb; if v,Ry < by
and A = ﬁln (bj/R1)’ but n = ’Ylbl/‘yle’ if 'YzRi > ')/1b1.

Using the series expansion [4]

had &
2In(l — 2o cosp - o) = — v i cos k¢,
2l P+ o) DI ¥

p

one can easily obtain the solution of the problem (9) by using the method of the separation of variables:

nt g NY A o cosky
aYe  om k R
T k=1

U (x, y) = —

(b—xxc)az/ - _ 2cy .
r= l/ » q,ﬁarctg{ (b, — X — i —

(bl—x—c —ry

As above, to obtain the third approximation U? (x, y) the expression for U? (x, y) is found on the closed
curve Ty. To this end the coordinates r and ¢ are expressed by means of the coordinates p, ¢ on the closed
curve I';:

/i (I — 2acos ¢ = &) Ry c*sing
= L .= arct 5 TR .
=V e &\ b, (bib, — ¢ — R, (b7 = Rijcos ¢
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Fig. 2. Isotherm distribution for
R, =1, R, =0.333, and b = 0.467.

By substituting these expressions in (10) one finds the values of the function U? (x, y) on the closed curve
T,. For the third approximation U? (x, y) one considers the problem
AU3(x, g) =0, Utjp, =0, USp, = — Uy, = U2 (g),

whose solution can be written as follows:

Y5 R —

of Vi —P

h

19®

U(x, y) =ayln £ + V {apcos kg — by, sin ke),
LU

where ay, by are the Fourier coefficients for the function U(g).
Further approximations are similarly obtained.

Computations with variously modified data were carried out to throw light on the convergence rate of
the iteration procedure and other problems related to numerical implementation. As one would expect, the
number of iterations needed to attain an acceptable accuracy depends essentially on how close the inner-
closed curves are to each other. For example, for R, =1, R, = 0.25, b = 0.5 one needs four approximations
for the inequality max|UN (x, y)i< 10~ to hold but for R, =1, Ry =0.33 and the eccentricity b = 0.47 one must
already have six iterations for the same inequality to be satisfied. In Fig. 1a,b the distribution is shown for
the first and second case of partial sums o of the series (5) on the straight line which joins the centers of the
circles Ty and I, (b + Ry =x =b—R,). In Fig. 2 the isotherms are shown for the second case.

In the general case a universal program was prepared in ALGOL for the electronic computer M-222 to
solve heat-conduction problems for a domain of any connectivity and bounded by smooth closed curves. The
"inner" problems (that is, intermediate problems for doubly connected domains) were solved by finite differ-
ences. The computations have shown that the proposed method is efficient only for domains of low connectiv-
ity containing not more than three to four inner closed curves. Any extension of connectivity results in rapid
growth of the required computer time. The latter can be reduced if the exact solutions are known of the inter-
mediate problems.

LITERATURE CITED

1. G. F. Muchnik and I. V. Rubashov, Methods of the Theory of Heat Exchange, Vol. 1, Heat Conduction

[in Russian], Vysshaya Shkola, Moscow (1964).

S. K. Godunov, Equations of Mathematical Physics [in Russian], Nauka, Moscow (1971).

V. S. Kolesov, I. 1. Fedik, and E. E. Chuiko, Inzh.-Fiz, Zh., 27, No. 6 (1974).

4, 1. 8. Gradshtein and I. M. Ryzhik, Tables of Integrals, Sums, Series, and Products, Academic Press
(1966).

5. A. F. Timan and V. N, Trofimov, Introduction to the Theory of Harmonic Functions [in Russian], Nauka,
Moscow (1968).

L N

1491



